2010年考研数学概率复习重点

2009年02月16日 来源:考研教育网
二维码
用微信扫描二维码
分享至好友和朋友圈
    第一章
    
    1、交换律、结合律、分配率、的摩根律;(解题的基础)
    
    2、古典概型——有限等可能、几何模型——无限等可能;
    
    3、抽签原理——跟先后顺序无关;
    
    4、小概率原理——小概率事件在一次试验不可能发生,一旦发生就怀疑实现规律的正确性;
    
    5、条件概率:注意当条件的概率必须大于0;
    
    6、全概:原因>结果 贝叶斯:结果>原因;
    
    7、相容通过事件定义,独立通过概率定义。
    
    第二章
    
    1、0——1分布,二项分布,泊松分布X的取值都是从0开始;
    
    2、分布函数是右连续的,在求分布函数也尽量写成右连续的;
    
    3、分布函数的性质、概率密度的性质;
    
    4、连续性随机变量任一指定值的概率为0;
    
    5、概率为0不一定是不可能事件,概率为1不一定是必然事件;
    
    6、正态分布的图形性质;
    
    7、求函数的分布尽量按定义法,按定义写出基本公式;
    
    8、分段单调时应该分段使用公式再相加。
    
    第三章(这章比较容易出错)
    
    1、二维分布函数的性质;(不减函数而不是单增函数;右连续)
    
    2、求分布函数一定要按定义来,注意画对图形;
    
    3、求边缘分布的时候,注意不同变量的区间用在什么地方;求X的边缘分布的话,先对X的区间进行划分,再不同的区间对Y的全部区间进行积分(Y在不同的区间可能有不同的函数表达)
    
    4、负无穷到正无穷的E的负的二分之T平方的积分;(浙三P83)
    
    5、算条件概率也一样,注意相应的区间;(这种题细节丢分太可惜)
    
    6、max(x,y)与min(x,y)相互独立的情况是什么?独立同分布又是什么?(参见08选择题)
    
    7、边缘分布一般不能确定分布的,只有当变量相互独立才可以。
    
    第四章
    
    1、级数绝对收敛,期望才存在;
    
    2、期望的和等于和的期望,xy之间不要求任何关系;期望的乘积等于乘积的期望,xy要相互独立;
    
    3、浙三P120:分解的思想,还有P126;
    
    4、方差的和在独立和不独立时公式不一样;
    
    5、独立推出不相关;不相关推不出独立;不相关只是线性不相关;题目中如果xy的关系能够表示出来的话(一般)都是不独立;
    
    6、二维正态分布、独立不相关等价;
    
    7、提示:求一些积分的时候有时候可以用到对称性;
    
    8、数一400题P140那个评注上面T(4)=3!(会用,那么做题会很方便)
    

1 [2] 下一页