考研数学阶段复习小结之概率论与数理统计
2009年07月08日
来源:中国教育网
用微信扫描二维码
分享至好友和朋友圈
分享至好友和朋友圈
要求:考生熟练掌握样本均值、样本方差的性质和计算,会根据χ2分布、 t分布和F分布的定义和性质推导有关正态总体某些统计的计量的分布。
参数估计考查的主要内容有:
(1)求参数的矩估计、极大似然估计;
(2)判断估计量的无偏性、有效性、一致性;
(3)求正态总体参数的置信区间。
要求:考生熟练地求得参数的矩估计、极大似然估计并判断无偏性,会求正态总体参数的置信区间。假设检验考查的显著的主要内容有:
(1)正态总体参数的显著性检验;
(2)总体分布假设的χ2检验。
要求:考生会进行正态总体参数的显著性检验和总体分布假设的χ2检验。
常有的题型有:填空题、选择题、计算题和证明题,试题的主要类型有:
(1)确定事件间的关系,进行事件的运算;(2)利用事件的关系进行概率计算;(3)利用概率的性质证明概率等式或计算概率;(4)有关古典概型、几何概型的概率计算;(5)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;(8)利用随机变量的分布函数、概率分布和概率密度的定义、性质确定其中的未知常数或计算概率;(9)由给定的试验求随机变量的分布;(10)利用常见的概率分布(例如(0-1)分布、二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布等)计算概率;(11)求随机变量函数的分布(12)确定二维随机变量的分布;(13)利用二维均匀分布和正态分布计算概率;(14)求二维随机变量的边缘分布、条件分布;(15)判断随机变量的独立性和计算概率;(16)求两个独立随机变量函数的分布;(17)利用随机变量的数学期望、方差的定义、性质、公式,或利用常见随机变量的数学期望、方差求随机变量的数学期望、方差;(18)求随机变量函数的数学期望;(19)求两个随机变量的协方差、相关系数并判断相关性;(20)求随机变量的矩和协方差矩阵;(21)利用切比雪夫不等式推证概率不等式;(22)利用中心极限定理进行概率的近似计算;(23)利用t分布、χ2分布、F分布的定义、性质推证统计量的分布、性质;(24)推证某些统计量(特别是正态总体统计量)的分布;(25)计算统计量的概率;(26)求总体分布中未知参数的矩估计量和极大似然估计量;(27)判断估计量的无偏性、有效性和一致性;(28)求单个或两个正态总体参数的置信区间;(29)对单个或两个正态总体参数假设进行显著性检验;(30)利用χ2检验法对总体分布假设进行检验。
这一部分主要考查概率论与数理统计的基本概念、基本性质和基本理论,考查基本方法的应用。对历年的考题进行分析,可以看出概率论与数理统计的试题,即使是填空题和选择题,只考单一知识点的试题很少,大多数试题是考查考生的理解能力和综合应用能力。要求考生能灵活地运用所学的知识,建立起正确的概率模型,综合运用极限、连续函数、导数、极值、积分、广义积分以及级数等知识去解决问题。
在解答这部分考题时,考生易犯的错误有:
(1) 概念不清,弄不清事件之间的关系和事件的结构;
(2) 对试验分析错误,概率模型搞错;
(3) 计算概率的公式运用不当;
(4) 不能熟练地运用独立性去证明和计算;
(5) 不能熟练掌握和运用常用的概率分布及其数字特征;
(6) 不能正确应用有关的定义、公式和性质进行综合分析、运算和证明。
综合历年考生的答题情况,得知概率论与数理统计试题的得分率在0.3左右,区分度一般在0.40以上。这表明试题既有一定的难度,又有较高的区分度。
上一页 [1] 2 |
招生信息